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Abstract
The dynamics of observables which are matrices depending on h̄ and taking
values in classical phase-space is defined by retaining the terms up to the first
order in h̄ of the Moyal bracket. Within this semiclassical approach a first-
order Lagrangian involving gauge fields is studied as a constrained Hamiltonian
system. This provides a systematic study of spin dynamics in the presence of
non-Abelian Berry gauge fields. We applied the method to various types of
dynamical spin systems and clarified some persisting discussions. In particular
employing the Berry gauge field which generates the Thomas precession, we
calculated the force exerted on an electron in the external electric and magnetic
fields. Moreover, a simple semiclassical formulation of the spin Hall effect is
accomplished.

PACS numbers: 03.65.Sq, 85.75.−d, 71.15.−m

1. Introduction

In [1], the intrinsic spin Hall effect was studied considering the Abelian and non-Abelian
Berry gauge fields [2] arising from the adiabatic transport. After this seminal work, there
has been a great effort to employ Berry gauge fields to acquire a better understanding of
spin-dependent dynamics semiclassically [3–17]. Although similar phenomena were treated
letting coordinates and/or momenta be noncommuting, they appear to be disconnected. We
would like to present a formulation which embraces these approaches. In our formulation
keeping track of the semiclassical approximation is easy and interactions between different
gauge fields can be introduced in a simple manner.
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To present our approach we need to recall the Weyl–Wigner–Groenewold–Moyal
(WWGM) method of quantization [18] as well as the Dirac formulation of constrained
Hamiltonian systems [19].

Quantum dynamics of particles without spin is usually provided by operators depending
on the quantum phase-space variables (p̂µ, x̂µ) satisfying the Heisenberg algebra: [p̂µ, x̂ν] =
−ih̄δµν, [p̂µ, p̂ν] = 0 and [x̂µ, x̂ν] = 0. However, there is an alternative approach due to
WWGM where one introduces symbols of operators and their star product: observables are
functions of classical phase-space variables and the operator product is replaced with the star
product [18]. The WWGM method works well for observables possessing a classical limit.
However, it is not clear how it should be generalized to embrace spin degrees of freedom. Spin
may be incorporated into classical mechanics considering the semiclassical approximation
as well as the nonrelativistic limit of the Dirac Hamiltonian. The latter is given in terms of
operator-valued matrices. Hence, we consider observables which are matrices whose elements
are the functions of classical phase-space variables but depend on h̄. Dynamical equations of
these matrix-valued symbols will be given by a semiclassical bracket acquired from the Moyal
bracket.

When there are some different types of gauge fields, they can be incorporated into
the Hamiltonian formalism by considering an enlarged Lagrangian system which leads to
second class constraints. Indeed, to embed Berry gauge fields in the semiclassical scheme,
a constrained Hamiltonian dynamics will be presented starting from an appropriate matrix-
valued Lagrangian. We adopt the Dirac formulation of constrained Hamiltonian dynamics by
replacing the Poisson bracket with the proposed semiclassical bracket. This furnishes us with
a systematic formulation of dynamics when non-Abelian Berry gauge fields are present.

Once this formulation of matrix-valued observables coupled to gauge fields is
accomplished, we can employ it to investigate dynamical properties of diverse spin systems.
The semiclassical dynamics of Bloch electrons in the adiabatic approximation where interband
interactions are neglected was discussed in [8, 11]. We study the same problem within our
approach. We achieved the correct phase-space measure and noncommutativity of phase-space
variables. Unitary transformations which generate Berry gauge fields are also considered. We
derived the equations of motion which can be used in topological spin transport [12]. In
[15] was shown that when an electric field is applied to an electron, a transverse force
on the spin current occurs. This force resulted in the Heisenberg equation of motion of
velocity, considering the nonrelativistic limit of the Dirac Hamiltonian. We show that it can
easily be derived within our formulation. On the other hand, the nonrelativistic limit of the
Dirac Hamiltonian can also be obtained by a momentum-dependent Berry gauge field which
generates the Thomas precession [20]. We calculate the force acting on an electron in the
electric and magnetic fields in the presence of this gauge field. The same transverse force
on the spin current occurs, which depends only on the electric field. However, the terms
depending on both the magnetic and electric fields do not concur. Experiments may settle
this disagreement. The intrinsic spin Hall effect was envisaged in [21] analyzing the spin
current due to the Rashba Hamiltonian [22]. Investigating the Rashba Hamiltonian is still
attractive, although when the vertex corrections are taken into account the originally proposed
universal behavior of a spin Hall conductivity does not survive [23] (for a review see [24]).
We study the Rashba spin–orbit coupling within our semiclassical approach to attain a very
simple formulation of the spin Hall conductivity. It is inspired by the derivation of the Hall
conductivity by demanding that the force acting on electrons vanish.

In section 2 we present the semiclassical bracket of matrix-valued observables and its
basic properties. The semiclassical constrained Hamiltonian formulation which leads to a
systematic approach of analyzing dynamical systems with different sorts of non-Abelian
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gauge fields is given in section 3. An application of the formalism to various dynamical spin
systems is considered in section 4. We clarified some persisting discussions and also gave a
simplistic formulation of the spin Hall conductivity. The obtained results and other possible
applications are discussed in the concluding section.

2. Semiclassical symbols and the Moyal bracket

Let us deal with the classical canonical variables (pµ, xµ) corresponding to the quantum
phase-space (p̂µ, x̂µ);µ = 1, . . . ,M . In the WWGM method of quantization one considers
the symbol map [18]

S(f̂ (p̂, x̂)) = f (p, x), (1)

where f (p, x) is the c-number function corresponding to the operator f̂ (p̂, x̂).

Let the operator product of the quantum observables f̂ and ĝ be

f̂ (p̂, x̂)ĝ(p̂, x̂) = ĥ(p̂, x̂).

The symbol map should respect the operator product, so that we should introduce a (star)
product satisfying

S(f̂ (p̂, x̂)ĝ(p̂, x̂)) = S(ĥ(p̂, x̂)) = S(f̂ (p̂, x̂)) � S(ĝ(p̂, x̂)). (2)

Obviously, the symbol map as well as the star product depends on the operator ordering
adopted. We deal with the Weyl ordering where the associative star product is

� = exp

[
ih̄

2

( ←−
∂

∂xµ

−→
∂

∂pµ

−
←−
∂

∂pµ

−→
∂

∂xµ

)]
. (3)

The arrows on the derivatives indicate the direction in which they should be applied. We
adopt the Einstein convention, hence the repeated indices are summed over. To imitate the
commutator of operators, we define the Moyal bracket of two arbitrary observables f (p, x)

and g(p, x) as

[f (p, x), g(p, x)]� ≡ f (p, x) � g(p, x) − g(p, x) � f (p, x). (4)

Hence, the classical phase-space variables satisfy the Moyal bracket

[pµ, xν]� = −ih̄δν
µ, (5)

analogous to the canonical commutation relations. The classical limit of the Moyal bracket
(4) is the Poisson bracket:

lim
h̄→0

−i

h̄
[f (p, x), g(p, x)]� = {f (p, x), g(p, x)} ≡ ∂f

∂xν

∂g

∂pν

− ∂f

∂pν

∂g

∂xν
. (6)

When one considers the Dirac Hamiltonian or higher spin formalisms, it is still possible
to define a symbol map. Now observables are matrices which take values in the classical
phase-space [25, 26]. The Moyal bracket of the matrices Mab(p, x) and Nab(p, x) can be
defined as

([M(p, x),N(p, x)]�)ab = Mac(p, x) � Ncb(p, x) − Nac(p, x) � Mcb(p, x). (7)

However, the classical limit (6) of (7), in addition to the Poisson brackets of matrices, yields
a commutator of matrices which is singular. Generally the observables in a block-diagonal
form are taken into account for getting rid of the matrix commutator. As far as observables
possessing a direct classical interpretation are considered, this restriction seems necessary
for a semiclassical study [26]. Indeed, we will relax this condition. When interactions are
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considered, the nonrelativistic limit of the Dirac Hamiltonian may include the spin. Then
there will be terms depending on h̄ whose classical limit is not direct. We would like to study
the semiclassical spin dynamics. Thus, although we deal with the classical phase-space we let
the symbols depend on h̄. Therefore, instead of the classical limit (6) we deal with the limit
obtained from the Moyal bracket (7) by retaining the terms up to h̄:

{M(p, x),N(p, x)}C ≡ −i

h̄
[M,N ] +

1

2
{M(p, x),N(p, x)} − 1

2
{N(p, x),M(p, x)}. (8)

We would like to emphasize that the first term is the commutator of matrices; it is not the
quantum-mechanical one. Hence, it is not an attempt to combine the quantum commutator
and the Poisson bracket1. Although we keep terms up to h̄ order in the Moyal bracket (7),
remember that M and N can depend on h̄. In fact, (8) is an expansion in powers of h̄ where
only the first two lowest nonvanishing terms are retained.

Multiplication of observables is still given by the star product (3). Hence the Jacobi
identity which should be satisfied is given by

{M, {N,L}C}� + {N, {L,M}C}� + {L, {M,N}C}�
= [M, {N,L}] − [M, {L,N}] + {M, [N,L]} − {[N,L],M} − i

h̄
[M, [N,L]]

+ (cyclic permutations of M,N,L) + O(h̄) = 0.

In fact one can show that it is fulfilled up to the h̄ order. Moreover, one can observe that the
Leibniz rule defined as

{M � N,L}C = {M,L}C � N + M � {N,L}C (9)

is also satisfied at the h̄ order.
To define semiclassical dynamical equations, we propose to replace the Poisson bracket in

classical dynamical equations with the semiclassical bracket (8). Let the symbol of the Dirac
Hamiltonian or its nonrelativistic approximation be the matrix H(p, x). Thus, we consistently
establish

Ṁ(p, x) = {M(p, x),H(p, x)}C (10)

as the time evolution of the semiclassical observable M(p, x). It is worth recalling that, as is
elucidated above, in this equation of motion one retains the lowest two nonvanishing terms
in h̄.

3. A semiclassical constrained Hamiltonian system

When a classical system is described with a Lagrangian, the definition of canonical momenta
can yield some relations between coordinates and momenta which are called primary
constraints. Preserving these constraints in time may produce some other constraints [19].
Once all the constraints are derived each one can be classified as first or second class due to their
Poisson bracket relations. A method of treating second class constraints is to introduce Dirac
brackets which effectively set the constraints equal to zero. We will consider a constrained
Hamiltonian system utilizing the semiclassical bracket (8) and the dynamical equation (10).

Let us consider the first-order Lagrangian which is a N × N matrix:

L = ṙα
(

1
2Iyα + ρAα(r, y) + ηaα(r, y)

) − ẏα
(

1
2Irα − ξBα(r, y)

) − H0(r, y). (11)

1 For the attempts of combining the Poisson and quantum brackets, see [27] and references given therein.
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Here, α = 1, . . . , n, and for the nonrelativistic case the dot over the variables indicates the
derivative with respect to time t and for the relativistic formalism it is the derivative with
respect to an evolution parameter τ.ρ, ξ and η are coupling constants corresponding to the
gauge fields A,B and a, respectively, which are N ×N matrices. I is the unit matrix. Observe
that in (11) generally one cannot get rid of A,B and a terms by redefining the coordinates rα

or yα. The definition of canonical momenta


α
r = ∂L

∂ṙα

, 
α
y = ∂L

∂ẏα

leads to vanishing of the relations

ψ1α ≡ (

α

r − 1
2yα

)
I − ρAα − ηaα, (12)

ψ2α ≡ (

α

y + 1
2 rα

)
I − ξBα, (13)

which are called primary constraints. In terms of the canonical Hamiltonian H0, we need to
introduce the extended Hamiltonian

He = H0 + λα
z ψz

α, (14)

where λα
z are Lagrange multipliers and z = 1, 2. To employ the semiclassical approach of

section 2, we identify the canonical variables as pµ = (

α

y ,
α
r

)
and xµ = (yα, rα). The

semiclassical brackets between the constraints can be shown to be{
ψ1

α, ψ1
β

}
C

= ρFαβ + ηfαβ − iρη

h̄
[Aα, aβ ] − iρη

h̄
[aα,Aβ],{

ψ2
α, ψ2

β

}
C

= ξGαβ,{
ψ1

α, ψ2
β

}
C

= −gαβ + ξ
∂Bβ

∂rα
− ρ

∂Aα

∂yβ
− η

∂aα

∂yβ
− iξρ

h̄
[Aα,Bβ] − iξη

h̄
[aα,Bβ],

where gαβ is the flat metric, and field strengths are defined as

fαβ = ∂aβ

∂rα
− ∂aα

∂rβ
− iη

h̄
[aα, aβ ], (15)

Fαβ = ∂Aβ

∂rα
− ∂Aα

∂rβ
− iρ

h̄
[Aα,Aβ], (16)

Gαβ = ∂Bβ

∂yα
− ∂Bα

∂yβ
− iξ

h̄
[Bα,Bβ ]. (17)

Therefore, constraints (12) and (13) are second class and the condition of preserving them in
time, {

ψz
α,He

}
C

≈ 0, (18)

where ≈ indicates that the equality is valid up to vanishing of constraints, will determine λz
α.

In fact, in terms of

Czz′
αβ = {

ψz
α, ψz′

β

}
C
, Czz′′

αγ C
−1γβ

z′z′′ = δβ
α δz

z′ , (19)

one can show that (18) leads to

λα
z = −{

ψz′
β ,H0

}
C
C

−1αβ

zz′ . (20)

To set effectively the second class constraints (12) and (13) equal to zero, we introduce
the semiclassical Dirac bracket

{M,N}CD ≡ {M,N}C − {M,ψz}CC−1
zz′ {ψz′

, N}C. (21)

5
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Now, in dynamical equations the semiclassical bracket of observables (8) should be substituted
with the semiclassical Dirac bracket (21). Observe that the coordinates satisfy

{rα, rβ}CD = C
−1αβ

11 , (22)

{yα, yβ}CD = C
−1αβ

22 , (23)

{rα, yβ}CD = C
−1αβ

12 . (24)

We omitted the unit matrix I on the left-hand sides. Obviously, C−1αβ

12 = −C
−1αβ

21 = gαβ + · · · ,
thus one should consider rα as coordinates and yα as the corresponding momenta.

The equation of motion of an observable O(r, y) is given with the extended Hamiltonian
as

Ȯ(r, y) = {O(r, y),He}C, (25)

in accord with the constrained dynamical systems. Plugging solution (20) into (14) yields

He = H0 − {
ψz′

β ,H0
}

C
C

−1αβ

zz′ ψz
α.

The inverse matrix elements C
−1αβ

zz′ will be obtained as a power series in the coupling constants
ρ, ξ which may be identified with h̄. Then in the equation of motion (25) we will retain the
lowest two nonvanishing terms in h̄.

4. Spin dynamics

Within the formulation of the previous section, we will focus on some different approaches
of studying semiclassical dynamics of electrons in terms of Berry gauge fields. Before
considering specific systems let us present the general formulation where aα = aα(r) is an
Abelian gauge field and the coupling constants are η = e/c, ξ = h̄ and ρ = −h̄. In our
notation e < 0 for an electron. The matrix Czz′

αβ defined in (19) reads

Czz′
αβ =

(
e
c
fαβ − h̄Fαβ −gαβ + h̄Mαβ

gαβ − h̄Mβα h̄Gαβ

)
, (26)

where

Mαβ = ∂Bβ

∂rα
+

∂Aα

∂yβ
+ i[Aα,Bβ]. (27)

Obviously, Mαβ does not possess any symmetry or antisymmetry with respect to the indices,
so that one should distinguish Mαβ from Mβα. The inverse of (26) can be calculated at the first
order in h̄ as

C−1
11αβ = h̄Gαβ, (28)

C−1
12αβ = gαβ + h̄Mβα − e

c
h̄(Gf )αβ, (29)

C−1
21αβ = −gαβ − h̄Mαβ +

e

c
h̄(f G)αβ, (30)

C−1
22αβ = e

c
fαβ − h̄Fαβ +

eh̄

c
(Mf )αβ − eh̄

c
(Mf )βα − e2h̄

c2
(f Gf )αβ. (31)

The equations of motion of the phase-space variables can be obtained as

ṙα = h̄

(
∂H0

∂rβ
+ i[Aβ,H0]

)
Gαβ +

(
∂H0

∂yβ
− i[Bβ,H0]

) (
gαβ + h̄Mβα − eh̄

c
(Gf )αβ

)
,

(32)
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ẏα =
(

∂H0

∂rβ
+ i[Aβ,H0]

) (
−gαβ − h̄Mαβ +

eh̄

c
(f G)αβ

)
+

(
∂H0

∂yβ
− i[Bβ,H0]

)

×
(

e

c
f αβ − h̄F αβ +

eh̄

c
(Mf )αβ − eh̄

c
(Mf )βα − e2h̄

c2
(f Gf )αβ

)
, (33)

at the first order in h̄, employing definition (25).

4.1. Phase-space measure

In [8, 11], the Berry phase emerges because of keeping only lower band effects in studying
the semiclassical dynamics of Bloch electrons. To understand this formalism let aα = aα(r)

be the electromagnetic gauge field with the coupling constant η = e/c and the Berry gauge
fields be Aα = 0 and Bα = Bα(y) with ξ = h̄. Although, in [8, 11] only the Abelian gauge
field was considered, we let Bα be non-Abelian. Hence, the matrix C is given as in (26) with
Fαβ = Mαβ = 0, and at the first order in h̄ the following semiclassical Dirac brackets result,

{rα, rβ}CD = h̄Gαβ, (34)

{rα, yβ}CD = gαβ − eh̄

c
(Gf )αβ, (35)

{yα, rβ}CD = −gαβ +
eh̄

c
(f G)αβ, (36)

{yα, yβ}CD = e

c
fαβ − e2h̄

c2
(f Gf )αβ. (37)

Similar relations were obtained in [28] by studying the electromagnetic interactions of anyons.
Now, the equations of motion of rα and yα can be straightforwardly derived from (32) and (33),
respectively.

Adopting the formalism of the usual constrained Hamiltonian systems [29, 30], the
semiclassical phase-space volume element in the presence of second class constraints is given
by (∏

α

d
α
r d
α

y dyα drα

)
det 1/2Cδ(ψ1)δ(ψ2).

After eliminating 
r and 
y by employing constraints (12) and (13), and using (26) with
Fαβ = Mαβ = 0, the phase-space volume element becomes(∏

α

dyα drα

)
det1/2C =

(∏
α

dyα drα

) (
1 − fγβGγβ

2

)
. (38)

This is the phase-space volume element discussed in [8, 11]. Although in a different context
in [8] the role of second class constraints in defining the phase-space volume element (38) was
noted.

4.2. Unitary transformations

The nonrelativistic approximation of the Dirac Hamiltonian interacting with external fields
can be obtained in terms of the Foldy–Wouthuysen unitary transformation U. In [1, 13] Foldy–
Wouthuysen transformations were engaged to introduce Berry gauge fields. In [13] a projector
on the positive energy space P is employed to define

Bi = PU
∂U †

∂yi
. (39)

7



J. Phys. A: Math. Theor. 41 (2008) 315204 Ö F Dayi

Here, yi are the components of the 3-vector y and the flat metric is gij = δij ; i, j = 1, 2, 3.

The Berry gauge field can be shown to be [13]

Bi = c2εijkyjσk

2
(
E2

p + mc2Ep

) , (40)

where E2
p = (y · y)c2 + m2c4 and σi are the Pauli matrices. This is a non-Abelian gauge field.

Using (40) in the general approach (22)–(24), (28)–(31) with A = 0, a = 0 and ξ = h̄, yields

{yi, yj }CD = 0, (41)

{yi, rj }CD = −δij , (42)

{ri, rj }CD = −iεijk

c4

2E3
p

(
mσk +

yk(y · σ)

Ep + mc2

)
. (43)

These coincide with the noncommutativity relations obtained in [13].
On the other hand, in [12] a unitary transformation U = U(r, y) which diagonalizes

the initial matrix-valued Hamiltonian was introduced. Generally U = U(r, y) depends on
all phase-space variables. Hence one can define the gauge fields which are non-Abelian as
AG

i = −U ∂U †

∂ri ,BG
i = U ∂U †

∂yi , with ξ = h̄, ρ = −h̄. Because of being pure gauge fields their

field strengths vanish: FG
ij = 0,GG

ij = 0. However, in the adiabatic approximation one deals
with

A(ad)
i ≡ diag

(
U

∂U †

∂ri

)
, B(ad)

i ≡ diag

(
U

∂U †

∂yi

)
. (44)

Though these are Abelian gauge fields, their field strengths

F
(ad)
ij = ∂A(ad)

j

∂ri
− ∂A(ad)

i

∂rj
, G

(ad)
ij = ∂B(ad)

j

∂yi
− ∂B(ad)

i

∂yj

do no longer vanish.
The equations of motion of the phase-space variables can be read directly from (32)

and (33) as

ṙi = h̄
∂H0

∂rj

G
(ad)
ij +

∂H0

∂yj

(
δij + h̄M

(ad)
ij − eh̄

c
(G(ad)f )ij

)
,

ẏi = ∂H0

∂rj

(
−δij − h̄M

(ad)
ij +

eh̄

c
(f G(ad))ij

)

+
∂H0

∂yj

(
e

c
fij − h̄F

(ad)
ij +

eh̄

c
(M(ad)f )ij − eh̄

c
(M(ad)f )ij − e2h̄

c2
(f G(ad)f )ij

)
,

where fij is the electromagnetic field strength, η = e/c and

M
(ad)
ij = ∂B(ad)

j

∂ri
+

∂A(ad)
i

∂yj
.

In terms of these equations of motion one can study topological spin transport.

4.3. Transverse spin force

We would like to discuss the spin-dependent dynamics obtained in [15] within our approach
by using the equations of motion (32) and (33). For this purpose we choose the canonical
Hamiltonian to be

H0 = 1

2m
y2 + V + µBσ · B, (45)

8
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where µB = −eh̄/2mc and at the first order in h̄ we take Veff = V (r) + h̄2

8m2c2
∂2V (r)

∂r2
i

≈ V.Bi =
1
2εijkf

jk is the external magnetic field and σi are the Pauli matrices. In accord with [15] we
let B = 0 and the other Berry connection be

Ai = εijkσj

4mc2

∂V

∂rk

. (46)

Moreover, we set η = e/c and ρ = −h̄. We would like to emphasize that ri and yi are the
coordinates and momenta in the restricted phase-space. When we plug the gauge field (46)
and the canonical Hamiltonian (45) into the equations of motion (32), (33) we obtain

ṙi = ∂H0

∂yi

= yi

m
, (47)

ẏi = −∂H0

∂ri

− i[Ai , H0] +
∂H0

∂yj

(e

c
fij − h̄Fij

)
. (48)

The force can directly be read from (48) in terms of the velocity v ≡ ṙ given by (47) as

Fi = ẏi = mr̈i = − ∂

∂ri

(V + µBσ · B) +
e

c
εijkvjBk

+
h̄

4mc2

(
εijkσ

jvl

∂2V

∂rl∂rk

+ εjklσ
j vk ∂2V

∂rl∂ri

)
+

µB

2mc2

(
σiBl

∂V

∂rl

− Biσl

∂V

∂rl

)

+
h̄

8m2c4
εijkσl

∂V

∂rl

vj

∂V

∂rk

. (49)

Indeed, this is the force obtained in [15]. The last term is the transverse spin force on the spin
current quadratic in the electric field.

Equations of motion following from the nonrelativistic approximation of the Dirac
Hamiltonian can be derived in electrodynamics employing the Thomas precession [31] without
referring to the Dirac Hamiltonian. The relation between the nonrelativistic limit and the
Thomas precession was clarified in [20] by showing that the latter should be considered as
a Berry phase when the external electric potential is smooth. The related gauge field can be
obtained in the nonrelativistic limit from (40). Hence, to obtain the force acting on an electron
in the external electric and magnetic fields, it should be possible to consider either the gauge
field A given in (46) or the gauge field B obtained from (40) in the nonrelativistic limit: let
A = 0 and deal with the electrodynamic gauge field ai(r), η = e/c and the nonrelativistic
limit of the non-Abelian gauge field (40)

Bi = 1

4m2c2
εijky

jσ k. (50)

Field strength of this gauge field can be calculated to be

Gij = −1

2m2c2
εijkσ

k +
1

8m4c4
εijkyk(σ · y), (51)

where we used ξ = h̄.

By ignoring the f G terms in (32) and (33), the equations of motion are

ẏi = −∂(V + µBσ · B)

∂ri
+

e

mc
εijkyjBk, (52)

ṙi = yi

m
+ h̄Gij

∂V

∂rj

+
µB

2m2c2
(Bi(y · σ) − σi(B · y)). (53)

9
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Now, by keeping the terms linear in the velocity vi one can show that

mr̈i = m{ṙi , He}C = − ∂

∂ri

(V + µBσ · B) +
h̄

2mc2
εijkσ

jvl

∂2V

∂rl∂rk

+
e

c
εijkvjBk

+
µB

2mc2

(
σiBl

∂V

∂rl

− Biσl

∂V

∂rl

)
+

h̄

8m2c4
εijkσl

∂V

∂rl

vj

∂V

∂rk

. (54)

Up to some ∂2V/∂ri∂rj terms this coincides with (49). In fact, the latter approach is valid
for potentials changing slowly. However, neglecting the f G terms in (32) and (33) is not
justified, due to the fact that they may give contributions of the µB/mc2 order to the force.
Indeed, retaining the f G terms in (32) and (33) and using µB = −eh̄/2mc, the equations of
motion of the h̄ order are

ẏi = −∂(V + µBσ · B)

∂ri
+

e

mc
εijkyjBk − µB

mc2

(
∂V

∂ri
σjB

j − σiBj

∂V

∂rj

)
, (55)

ṙi = yi

m
+ h̄Gij

∂V

∂rj

− µB

2m2c2
(Bi(y · σ) + σi(y · B) − 2yi(B · σ)). (56)

Hence, the force linear in velocity becomes

mr̈i = − ∂

∂ri

(V + µBσ · B) +
h̄

2mc2
εijkσ

jvl

∂2V

∂rl∂rk

+
e

c
εijkvjBk

+
µB

2mc2

(
3σiBl

∂V

∂rl

+ Biσl

∂V

∂rl

− 4
∂V

∂ri

(Blσl)

)
+

h̄

8m2c4
εijkσl

∂V

∂rl

vj

∂V

∂rk

.

(57)

The last term which is the transverse spin force on the spin current results to be the same2.
However, the terms which depend on both the electric and magnetic fields are in dispute with
(49). This discrepancy between the two nonrelativistic approximation schemes can be settled
by experiments.

4.4. The spin Hall effect

Electrons constrained to move on a plane in the presence of a uniform external magnetic field
perpendicular to the plane deviate and produce an electric field which is perpendicular to
both the initial direction of the current and the magnetic field. This is the Hall effect which
manifests itself as the Hall conductivity. We would like to present a derivation of the Hall
conductivity which will inspire a simple formulation of the intrinsic spin Hall effect utilizing
our semiclassical approach. To this aim let us deal with the Hamiltonian

H0 = 1

2m
y2 + V (r1, r2), (58)

where the scalar potential is given in terms of the uniform electric field components Ei as

V (r1, r2) = −eE1r1 − eE2r2. (59)

In order to constrain the electron to move on the r1r2-plane we set y3 = 0. We consider the
vanishing Berry gauge fields A = 0,B = 0 and let there be a uniform magnetic field in the r3

direction:

f12 = B. (60)

2 In [32] it was claimed that this method leads to a transverse force in conflict with [15].

10
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The related coupling constant is η = e/c. The equations of motion following from (32)
and (33) are

ṙi = yi

m
, (61)

ẏ1 = eE1 +
eB

mc
y2, (62)

ẏ2 = eE2 − eB

mc
y1. (63)

The force acting on an electron can be read from (61) to (63), in terms of the velocity v ≡ ṙ,

as

F1 = mr̈1 = ẏ1 = eE1 +
eB

c
v2, (64)

F2 = mr̈2 = ẏ2 = eE2 − eB

c
v1. (65)

Till now we have considered a single particle dynamics. To connect it to a system of electrons
let us introduce the density of electrons κ . Thus, the electric current is defined by

j = eκv. (66)

We demand that the net force acting on electrons vanish Fi = 0, so that the electrons move
without deflection (see, e.g. [33]). We can solve this condition for the velocity and plug it
into (66), which yields the electric current(

j1

j2

)
=

(
0 −σH

σH 0

) (
E1

E2

)
, (67)

where

σH = −ecκ

B

is the Hall conductivity.
The intrinsic spin Hall effect is envisaged in [21] in terms of the Rashba spin–orbit

coupling [22]. By generalizing the Hall effect formulation we can introduce a simple method
of acquiring the spin Hall conductivity employing the Rashba spin–orbit coupling. The
Hamiltonian is still given by (58) with y3 = 0. However, there is no magnetic field: ai = 0.

To consider the linear Rashba spin–orbit coupling we set B = 0 and define

Ai = εijkσj e
z
k. (68)

Here, ez is the unit vector in the third direction ez
k = δk3 and σi are the Pauli matrices.

Moreover, in the original formulation (11) we should take ρ = −αm/h̄, where α is the
Rashba coupling constant [22].

The related field strength can be calculated as

Fij = − iρ

h̄
[Ai ,Aj ] = 2ρ

h̄
σ3εijke

z
k. (69)

The equations of motion of the canonical variables are

ṙi = yi

m
, (70)

ẏi = −∂V

∂ri

+
ρ

m
Fijyj . (71)

11
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Hence, the force acting on the particle is

Fi = mr̈i = eEi +
2ρ2

h̄
σ3εijke

z
kvj . (72)

Imitating the formulation of the Hall effect we set Fi = 0, in order to have a motion without
deflection. This condition is solved for the velocity as

v
↑
1 = eh̄

2ρ2
E2, v

↓
1 = − eh̄

2ρ2
E2, (73)

v
↑
2 = − eh̄

2ρ2
E1, v

↓
2 = eh̄

2ρ2
E1. (74)

The arrows ↑ and ↓ correspond, respectively, to the positive and negative eigenvalues of σ3. It
is natural to define the spin current as

jz = h̄

2
(n↑v↑ − n↓v↓), (75)

where n↑ and n↓ denote the concentrations of states with spins along the ez and −ez directions.
Employing (73), (74) in (75) yields

jz = σSHez × E, (76)

where

σSH = −eh̄2

4ρ2
(n↑ + n↓) ≡ −eh̄4

4α2m2
n (77)

is the spin Hall conductivity. In this simplistic approach, the total concentration of states
n = (n↑ + n↓) is an input which should be given by other means. Although its calculation is
beyond the scope of this work, for having an insight let

n = sn∗
2D, (78)

where s is a constant and n∗
2D is the concentration of states occupying the lower energy state

of the Rashba Hamiltonian [22]:

n∗
2D = α2m2

πh̄4 .

Using (78) in (77) leads to the spin Hall conductivity

σSH = − es

4π
. (79)

This agrees with the universal behavior obtained in [21] for s = 1/2. However, when the
vertex corrections are taken into account it is known that this universal behavior does not
survive [23], as far as the linear Rashba coupling is considered. The vertex corrections were
calculated employing Green functions within the Born approximation. Hence, it is not clear
how one can incorporate the vertex corrections into our semiclassical scheme. To cure the
defects of the linear theory, it would be useful to study the Rashba couplings which are higher
orders in momenta (see [24] and references therein). Although we will not discuss it here, our
semiclassical approach can be used to investigate higher order generalizations of the Rashba
spin–orbit coupling.
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5. Discussions

Semiclassical limit designated as the bracket (8) can be utilized to study diverse dynamical
problems where spin degrees of freedom are not ignored. Hence, instead of dealing with wave
packets one can consider the single particle interpretation of the semiclassical dynamics of
spin-dependent systems.

It can be shown that the constrained Hamiltonian system which we presented here is
suitable to investigate properties of some topological quantum phases. Moreover, as we will
present in a future work it constitutes a new gauge-invariant method of studying dynamical
systems in noncommutative spaces.

Any model concerning spin dynamics utilizing Berry gauge fields which give rise to
noncommutativity of coordinates and/or momenta can be studied in terms of the semiclassical
approach presented here. We focused on some recent formalisms where some of persisting
discussions can be clarified. The results which we derived are valid up to the first order in h̄.

However, in this formulation keeping the track of the higher orders is possible. When higher
order h̄ corrections are considered there may be some different sources: gauge fields which
we consider may depend on higher h̄, the limit of the Moyal bracket will have another term
and the inversion of the matrix Czz′

αβ may lead to some higher h̄ terms.
Obviously, the formalism of the spin Hall conductivity which we reported here should be

elaborated. Nevertheless, due to its resemblance with the Hall effect and simplicity, it may be
profitable to predict some basic properties of the spin Hall effect.
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[19] Hanson A, Regge T and Teitelboim C 1976 Constrained Hamiltonian Systems (Roma: Accademia Nazionale
dei Lincei)

[20] Mathur H 1991 Phys. Rev. Lett. 67 3325
[21] Sinova J, Culcer D, Niu Q, Sinitsyn N A, Jungwirth T and MacDonald A H 2004 Phys. Rev. Lett. 92 126603
[22] Bychkov Y A and Rashba E I 1984 J. Phys. C: Solid State Phys. 17 6039
[23] Inoue J-I, Bauer G E W and Molenkamp L W 2004 Phys. Rev. B 70 041303

Raimondi R and Schwab P 2005 Phys. Rev. B 71 033311
Dimitrova O V 2005 Phys. Rev. B 71 245327

[24] Engel H-A, Rashba E I and Halperin B I 2006 Preprint cond-mat/0603306
[25] Spohn H 2000 Ann. Phys. 282 420
[26] Bolte J and Glaser R 2004 Commun. Math. Phys. 247 391

Bolte J and Glaser R 2004 J. Phys. A: Math. Gen. 37 6359
[27] Kisil V V 2005 Europhys. Lett. 72 873
[28] Chou C, Nair V P and Polychronakos A P 1993 Phys. Lett. B 304 105

See also Duval C and Horvathy P 2004 Phys. Lett. B 594 402
Dhar S, Basu B and Ghosh S 2007 Phys. Lett. A 371 406

[29] Fradkin E S 1973 Hamiltonian formalism in covariant gauge and the measure in quantum gravity New
Developments in Relativistic Quantum Field Theory (Proc. 10th Winter School of Theoretical Physics,
Karpacz, Poland) Acta Univ. Wratislav. 207 (Poland)

[30] Senjanovic P 1976 Ann. Phys. 100 227
[31] Jackson J D 1962 Classical Electrodynamics (New York: Wiley)
[32] Bliokh K Yu 2005 ‘Comment on [15]’ Preprint cond-mat/0511146
[33] Girvin S M 2000 Topological Aspects of Low Dimensional Systems ed A Comtet, T Jolicoeur, S Ouvry and

F David (Berlin: Springer) (Preprint cond-mat/9907002)

14

http://dx.doi.org/10.1103/PhysRevLett.67.3325
http://dx.doi.org/10.1103/PhysRevLett.92.126603
http://dx.doi.org/10.1088/0022-3719/17/33/015
http://dx.doi.org/10.1103/PhysRevB.70.041303
http://dx.doi.org/10.1103/PhysRevB.71.033311
http://dx.doi.org/10.1103/PhysRevB.71.245327
http://www.arxiv.org/abs/cond-mat/0603306
http://dx.doi.org/10.1006/aphy.2000.6039
http://dx.doi.org/10.1007/s00220-004-1064-0
http://dx.doi.org/10.1088/0305-4470/37/24/012
http://dx.doi.org/10.1209/epl/i2005-10324-7
http://dx.doi.org/10.1016/0370-2693(93)91407-E
http://dx.doi.org/10.1016/j.physletb.2004.05.049
http://dx.doi.org/10.1016/j.physleta.2007.06.055
http://dx.doi.org/10.1016/0003-4916(76)90062-2
http://www.arxiv.org/abs/cond-mat/0511146
http://www.arxiv.org/abs/cond-mat/9907002

	1. Introduction
	2. Semiclassical symbols and the Moyal bracket
	3. A semiclassical constrained Hamiltonian system
	4. Spin dynamics
	4.1. Phase-space measure
	4.2. Unitary transformations
	4.3. Transverse spin force
	4.4. The spin Hall effect

	5. Discussions
	Acknowledgments
	References

